Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(9): 4656-4667, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38314841

RESUMO

Two-dimensional transition metal carbides and nitrides (MXene-s) are the focus of extensive research due to their exceptional potential for practical applications. We study nanostructured MXene layers to design photodetector electrodes and increase their response through hot-electron generation. We demonstrate that the lattice arrangement plays a crucial role in exciting strong optical resonances in the nanostructured MXene, specifically Ti3C2Tx, despite its high loss and weak optical resonances in an isolated antenna. We use numerical simulations and analytical calculations with coupled dipole-quadrupole lattice sums for designing photodetector electrodes. We also provide proof-of-concept experimental demonstration of the enhanced resonances even for the case of lossy materials. We report on the excitation of strong lattice resonances of the MXene antenna array with enhanced absorption, resulting in a more efficient generation of hot electrons. Our findings reveal that a multi-period array of MXene antennas can improve narrowband and broadband photodetector functionality. We propose highly efficient absorbers based on MXene metasurfaces and transforming electrodes into hybrid photodetectors using MXene antennas to enhance their performance.

2.
Opt Express ; 31(24): 40380-40392, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38041341

RESUMO

High-refractive-index antennas with characteristic dimensions comparable to wavelength have a remarkable ability to support pronounces electric and magnetic dipole resonances. Furthermore, periodic arrangements of such resonant antennas result in narrow and strong lattice resonances facilitated by the lattice. We design iron pyrite antennas operating in the mid-infrared spectral range due to the material's low-energy bandgap and high refractive index. We utilize Kirchhoff's law, stating that emissivity and absorptance are equal to each other in equilibrium, and we apply it to improve the thermal properties of the iron pyrite metasurface. Through the excitation of collective resonances and manipulation of the antenna lattice's period, we demonstrate our capacity to control emissivity peaks. These peaks stem from the resonant excitation of electric and magnetic dipoles within proximity to the Rayleigh anomalies. In the lattice of truncated-cone antennas, we observe Rabi splitting of electric and magnetic dipole lattice resonances originating from the antennas' broken symmetry. We demonstrate that the truncated-cone antenna lattices support strong out-of-plane magnetic dipole lattice resonances at oblique incidence. We show that the truncated-cone antennas, as opposed to disks or cones, facilitate a particularly strong resonance and bound state in the continuum at the normal incidence. Our work demonstrates the effective manipulation of emissivity peaks in iron pyrite metasurfaces through controlled lattice resonances and antenna design, offering promising avenues for mid-infrared spectral engineering.

3.
Opt Express ; 31(10): 16857-16871, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157755

RESUMO

We investigate how the periodic lattices define the collective optical characteristics of the silicon and titanium nanoparticle arrays. We examine the effects of dipole lattice on the resonances of optical nanostructures, including those made of lossy materials, such as titanium. Our approach involves employing coupled-electric-magnetic-dipole calculations for finite-size arrays, as well as lattice sums for effectively infinite arrays. Our model shows that the convergence to the infinite-lattice limit is faster when the resonance is broad, requiring fewer array particles. Our approach differs from previous works by altering the lattice resonance through modifications in the array period. We observed that a higher number of nanoparticles is necessary to achieve convergence to the infinite-array limit. Additionally, we observe that the lattice resonances excited next to higher diffraction orders (such as second order) converge more quickly toward the ideal case of an infinite array than the lattice resonances related to the first diffraction order. This work reports on the significant advantages of using a periodic arrangement of lossy nanoparticles and the role of collective excitation in enhancing response from transition metals, such as titanium, nickel, tungsten, and so on. The periodic arrangement of nanoscatterers allows for the excitation of strong dipoles, boosting the performance of nanophotonic devices and sensors by improving the strength of localized resonances.

4.
Nanomaterials (Basel) ; 13(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37049354

RESUMO

Fano resonances result from the strong coupling and interference between a broad background state and a narrow, almost discrete state, leading to the emergence of asymmetric scattering spectral profiles. Under certain conditions, Fano resonances can experience a collapse of their width due to the destructive interference of strongly coupled modes, resulting in the formation of bound states in the continuum (BIC). In such cases, the modes are simultaneously localized in the nanostructure and coexist with radiating waves, leading to an increase in the quality factor, which is virtually unlimited. In this work, we report on the design of a layered hybrid plasmonic-dielectric metasurface that facilitates strong mode coupling and the formation of BIC, resulting in resonances with a high quality factor. We demonstrate the possibility of controlling Fano resonances and tuning Rabi splitting using the nanoantenna dimensions. We also experimentally demonstrate the generalized Kerker effect in a binary arrangement of silicon nanodisks, which allows for the tuning of the collective modes and creates new photonic functionalities and improved sensing capabilities. Our findings have promising implications for developing plasmonic sensors that leverage strong light-matter interactions in hybrid metasurfaces.

5.
Nanomaterials (Basel) ; 13(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37049363

RESUMO

Plasmonics is a revolutionary concept in nanophotonics that combines the properties of both photonics and electronics by confining light energy to a nanometer-scale oscillating field of free electrons, known as a surface plasmon. Generation, processing, routing, and amplification of optical signals at the nanoscale hold promise for optical communications, biophotonics, sensing, chemistry, and medical applications. Surface plasmons manifest themselves as confined oscillations, allowing for optical nanoantennas, ultra-compact optical detectors, state-of-the-art sensors, data storage, and energy harvesting designs. Surface plasmons facilitate both resonant characteristics of nanostructures and guiding and controlling light at the nanoscale. Plasmonics and metamaterials enable the advancement of many photonic designs with unparalleled capabilities, including subwavelength waveguides, optical nanoresonators, super- and hyper-lenses, and light concentrators. Alternative plasmonic materials have been developed to be incorporated in the nanostructures for low losses and controlled optical characteristics along with semiconductor-process compatibility. This review describes optical processes behind a range of plasmonic applications. It pays special attention to the topics of field enhancement and collective effects in nanostructures. The advances in these research topics are expected to transform the domain of nanoscale photonics, optical metamaterials, and their various applications.

6.
J Chem Phys ; 156(11): 114104, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35317599

RESUMO

Periodic nanoparticle arrays have attracted considerable interest recently since the lattice effect can lead to spectrally narrow resonances and tune the resonance position in a broad range. Multipole decomposition is widely used to analyze the role of the multipoles in the resonance excitations, radiation, and scattering of electromagnetic waves. However, previous studies have not addressed the validity and accuracy of the multipole decomposition around the lattice resonance. The applicability of the exact multipole decomposition based on spherical harmonics expansion has not been demonstrated around the lattice resonance with the strong multipole coupling. This work studies the two-dimensional periodic arrays of both plasmonic and dielectric nanospheres and compares the multipole decomposition results with the analytic ones around their lattice resonances. We study both the effective polarizabilities of multipoles and the scattering spectra of the structures. The analytical results are calculated from the coupled dipole-quadrupole model. This study demonstrates that the exact multipole decomposition agrees well with the numerical simulation around lattice resonances. Only a small number of multipoles are required to represent the results accurately.

7.
ACS Nano ; 16(4): 5994-6001, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35191683

RESUMO

In O-and C-band optical communications, Ge is a promising material for detecting optical signals that are encoded into electrical signals. Herein, we study 2D periodic Ge metasurfaces that support optically induced electric dipole and magnetic dipole lattice resonances. By overlapping Mie resonances and electric dipole lattice resonances, we realize the resonant lattice Kerker effect and achieve narrowband absorption. This effect was applied to the photodetector demonstrated in this study. The absorptance of the Ge nanoantenna arrays increased 6-fold compared to that of the unpatterned Ge films. In addition, the photocurrent in such Ge metasurface photodetectors increases by approximately 5 times compared with that in plane Ge film photodetectors by the interaction of these strong near-fields with semiconductors and the further transformation of the optical energy into electricity.

8.
ACS Nano ; 14(5): 5678-5685, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32298575

RESUMO

Artificial color pixels based on dielectric Mie resonators are appealing for scientific research as well as practical design. Vivid colors are imperative for displays and imaging. Dielectric metasurface-based artificial pixels are promising candidates for developing flat, flexible, and/or wearable displays. Considering the application feasibility of artificial color pixels, wide color gamuts are crucial for contemporary display technology. To achieve a wide color gamut, ensuring the purity and efficiency of nanostructure resonance peaks in the visible spectrum is necessary for structural color design. Low-loss dielectric materials are suitable for achieving vivid colors with structural color pixels. However, high-order Mie resonances prevent color pixels based on dielectric metasurfaces from efficiently generating highly saturated colors. In particular, fundamental Mie resonances (electric/magnetic dipole) for red can result in not only a strong resonance peak at 650 nm but also high-order Mie resonances at shorter wavelengths, which reduces the saturation of the target color. To address these problems, we fabricated silicon nitride metasurfaces on quartz substrates and applied Rayleigh anomalies at relatively short wavelengths to successfully suppress high-order Mie resonances, thus creating vivid color pixels. We performed numerical design, semianalytic considerations, and experimental proof-of-concept examinations to demonstrate the performance of the silicon nitride metasurfaces. Apart from traditional metasurface designs that involve transmission and reflection modes, we determined that lateral light incidence on silicon nitride metasurfaces can provide vivid colors through long-range dipole interactions; this can thus extend the applications of such surfaces to eyewear displays and guided-wave illumination techniques.

9.
Opt Lett ; 43(21): 5186-5189, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30382970

RESUMO

High-refractive-index nanoparticle two-dimensional arrays have attracted a lot of interest recently, as they support both electric and magnetic resonances and can be implemented as functional metasurfaces. Here we show that under particular conditions, the all-dielectric nanoparticle metasurfaces can resonantly suppress transmission. As an important example, resonant electric and magnetic dipole (MD) responses of silicon nanoparticle arrays are considered in the air, as well as in the dielectric matrix in visible and infrared spectral ranges. We show that the wave resonantly scattered forward by one or both electric and MD moments of nanoparticles can destructively interfere with the incident wave, providing significant suppression of the transmission through the array. The reported effect can find important applications in different fields related to optics and photonics such as the development of filters, sensors, and solar cells.

10.
Opt Express ; 23(24): 31109-19, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26698739

RESUMO

We study plasmonic waveguides with dielectric cores and hyperbolic multilayer claddings. The proposed design provides better performance in terms of propagation length and mode confinement in comparison to conventional designs, such as metal-insulator-metal and insulator-metal-insulator plasmonic waveguides. We show that the proposed structures support long-range surface plasmon modes, which exist when the permittivity of the core matches the transverse effective permittivity component of the metamaterial cladding. In this regime, the surface plasmon polaritons of each cladding layer are strongly coupled, and the propagation length can be on the order of a millimeter.

11.
Opt Express ; 23(8): 9681-9, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25969005

RESUMO

Engineering plasmonic metamaterials with anisotropic optical dispersion enables us to tailor the properties of metamaterial-based waveguides. We investigate plasmonic waveguides with dielectric cores and multilayer metal-dielectric claddings with hyperbolic dispersion. Without using any homogenization, we calculate the resonant eigenmodes of the finite-width cladding layers, and find agreement with the resonant features in the dispersion of the cladded waveguides. We show that at the resonant widths, the propagating modes of the waveguides are coupled to the cladding eigenmodes and hence, are strongly absorbed. By avoiding the resonant widths in the design of the actual waveguides, the strong absorption can be eliminated.

12.
Opt Express ; 22(23): 28890-7, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25402128

RESUMO

We propose new designs of plasmonic modulators, which can be used for dynamic signal switching in photonic integrated circuits. We study performance of a plasmonic waveguide modulator with bismuth ferrite as a tunable material. The bismuth ferrite core is sandwiched between metal plates (metal-insulator-metal configuration), which also serve as electrodes. The core changes its refractive index by means of partial in-plane to out-of-plane reorientation of ferroelectric domains in bismuth ferrite under applied voltage. As a result, guided modes change their propagation constant and absorption coefficient, allowing light modulation in both phase and amplitude control schemes. Due to high field confinement between the metal layers, existence of mode cut-offs for certain values of the core thickness, and near-zero material losses in bismuth ferrite, efficient modulation performance is achieved. For the phase control scheme, the π phase shift is provided by a 0.8-µm long device with propagation losses 0.29 dB/µm. For the amplitude control scheme, up to 38 dB/µm extinction ratio with 1.2 dB/µm propagation loss is predicted.


Assuntos
Bismuto/química , Compostos Férricos/química , Fenômenos Ópticos , Absorção de Radiação , Dispositivos Ópticos , Ressonância de Plasmônio de Superfície
13.
Opt Lett ; 39(16): 4663-6, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25121843

RESUMO

Strongly anisotropic media with hyperbolic dispersion can be used for claddings of plasmonic waveguides (PWs). In order to analyze the fundamental properties of such waveguides, we analytically study 1D waveguides arranged from a hyperbolic metamaterial (HMM) in a HMM-Insulator-HMM (HIH) structure. We show that HMM claddings give flexibility in designing the properties of HIH waveguides. Our comparative study on 1D PWs reveals that HIH-type waveguides can have a higher performance than MIM or IMI waveguides.

14.
Nanoscale ; 6(9): 4716-27, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24658421

RESUMO

We study the emission of photoelectrons from plasmonic nanoparticles into a surrounding matrix. We consider two mechanisms of electron emission from the nanoparticles--surface and volume ones--and use models for these two mechanisms which allow us to obtain analytical results for the photoelectron emission rate from a nanoparticle. Calculations have been carried out for a step potential at the surface of a spherical nanoparticle, and a simple model for the hot electron cooling has been used. We highlight the effect of the discontinuity of the dielectric permittivity at the nanoparticle boundary in the surface mechanism, which leads to a substantial (by ∼5 times) increase of the internal photoelectron emission rate from a nanoparticle compared to the case when such a discontinuity is absent. For a plasmonic nanoparticle, a comparison of the two photoeffect mechanisms was undertaken for the first time which showed that the surface photoeffect can in the general case be larger than the volume one, which agrees with the results obtained for a flat metal surface first formulated by Tamm and Schubin in their pioneering development of a quantum-mechanical theory of photoeffect in 1931. In accordance with our calculations, this possible predominance of the surface effect is based on two factors: (i) effective cooling of hot carriers during their propagation from the volume of the nanoparticle to its surface in the scenario of the volume mechanism and (ii) strengthening of the surface mechanism through the effect of the discontinuity of the dielectric permittivity at the nanoparticle boundary. The latter is stronger at relatively lower photon energies and correspondingly is more substantial for internal photoemission than for an external one. We show that in the general case, it is essential to take both mechanisms into account in the development of devices based on the photoelectric effect and when considering hot electron emission from a plasmonic nanoantenna.

15.
Opt Express ; 21(22): 27326-37, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24216955

RESUMO

We propose several planar layouts of ultra-compact plasmonic modulators that utilize alternative plasmonic materials such as transparent conducting oxides and titanium nitride. The modulation is achieved by tuning the carrier concentration in a transparent conducting oxide layer into and out of the plasmon resonance with an applied electric field. The resonance significantly increases the absorption coefficient of the modulator, which enables larger modulation depth. We show that an extinction ratio of 46 dB/µm can be achieved, allowing for a 3-dB modulation depth in much less than one micron at the telecommunication wavelength. Our multilayer structures can be integrated with existing plasmonic and photonic waveguides as well as novel semiconductor-based hybrid photonic/electronic circuits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...